Делаем сами своими руками Инструкции, мастер-классы, полезные советы, поделки, идеи
и многое другое на tehnologi.su

Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

Мастер-класс по моделированию ярусной юбки воланами получился достаточно полезным, но, как мне кажется, малоинформативным. Особенно для тех, кто хочет, не просто зацепившись за идею, поплыть своим путем, а для тех, кто действительно хочет построить выкройку и сшить по ней вполне конкретную вещь. К тому же в результате экспериментов (построения выкроек для реальных людей, с конкретными запросами) появились новые идеи, как по усовершенствованию процесса построения, так и по применению такого способа моделирования.

Идея – наше все! Так и пришло решение систематизировать и сделать более доступным и понятным моделирование выкроек на основе прямого конуса  с помощью приложения Excel.

Что за зверь такой этот конус прямой? Совсем не страшный, тем более, что нас интересуют его усеченные подвиды, как на картинке ниже: 

Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

Сразу хочу сказать, что повествование сие условно можно разбить на три части. Я долго сомневалась публиковать их сразу или друг за дружкой, но, в конце концов, решила продемонстрировать “всё и сразу”. Надеюсь, что вы не утратите задор и оптимизм, погрязнув в скучных расчетах первой части, а почувствуете вкус к такому моделированию, увидев все многообразие его применения.

Часть первая: “Мы строили, строили и наконец построили! Да здравствуем мы, ура!”

Используя еще достаточно сырую версию расчетов, я поспешила сшить себе юбку и поделиться своими “изысканиями” с уважаемой публикой. Однако, как показали эксперименты, теоретическая база оказалась сильно недоработанной. Поэтому для начала я постаралась привести к более понятному виду задание исходных данных для расчета  и условий моделирования. О чем это я?

  • Если в предыдущей, к сожалению, уже нещадно растиражированной версии, чтобы построить выкройку от пользователя требовалось задать параметры непосредственно для клина юбки шестиклинки, то теперь можно задавать параметры для юбки в целом. А число клиньев стало просто еще одним параметром.
  • Степень клешения юбки теперь определяется не с помощью пространственного воображения по каждому клину, а по юбке в целом и измеряется самой понятной для меня “единицей клёша” юбки – количеством “солнц” по подолу.  
  • Еще я ввела такой параметр, как  “плавность перехода годе”. Что он означает? Этот параметр может принимать значения от 0 до 1. При значении равном 0 – угол раствора средней части клина равен углу раствора верхней части, а при значении равном 1 – угол раствора средней части клина равен углу раствора нижней части. Но это сухим математическим языком так звучит, если перейти на “портновский”, то  это значит, что с помощью  этой цифири  можно определить, где начинается “активное годе”: на границе верхнего и среднего сегментов или среднего и нижнего. Как вы понимаете, “истина где-то посередине”, а где именно – определяется либо вашим желанием, либо суровой действительностью в виде фиксированного отреза ткани неудобной ширины.
  • Собственно весь это расчет и привлечение Excel задуманы не просто для построения абстрактной выкройки, а для того, чтобы готовая выкройка позволила реализовать задуманное из хомяческих запасов и не заставляла их снова пополнять, покупая ткань “чтоб уж заведомо хватило”.  Говоря проще, таким способом можно рассчитать точную выкройку под имеющийся кусок ткани или сделать точный расчет (+/- 5см) для закупки новой ткани.

    Разбавлю занудное повествование картинками, иллюстрирующими, “как это работает”. Для простоты и отвлеченности будем строить выкройки на “идеальную модель”, начальные данные которой 60-90-20(ОТ-ОБ-ВБ) известны всем.

    Пример1. Рассчитаем для нашей “идеальной модели” юбочку длиной 80см, струящуюся по бедрам и плавно переходящую в 2 “солнца”, разделив ее на воланы по принципу “золотого сечения”. Красивая юбка получится? Наверное…  Но посмотрим на предполагаемую выкройку:

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Обратили внимание на строки, закрашенные в цвета клиньев? Так вот: в этих строчках содержится ценная информация. Если в основном столбце черным шрифтом указана высота яруса на выкройке, то цветными циферками  напротив этого значения представлен прямоугольник ткани, из которого можно выкроить этот сегмент. Темно-красным шрифтом указан размер этого прямоугольника по радиусу сегмента, а зеленым – по углу. Припуски по 1.5 см уже учтены, а для нижнего клина можно учесть и подгибку – 2.5 см. Согласна, это не самый эффективный способ расчета ткани, но уже хоть что-то…

    Теперь проанализируем полученную выкройку. Что в ней не так? С раскладкой придется повозиться, да и расход ткани будет большой.  Конечно, для “идеальной модели” это не препятствие на пути к новой юбке. Но!  Можно, изменив выкройку совсем чуть-чуть, сделать так, что бы нижний клин вписался, например, в половину ширины ткани(150см), средний – в треть, пожертвовав при этом 1/8 в степени клешения. 

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    А можно чуть-чуть отойти от “золотых” пропорций, сохранив при этом клеш в “два солнца по подолу”

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Еще можно всего на 1/20 изменить “плавность перехода годе”, приблизив угол раствора среднего сегмента к углу раствора верхнего.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

     

    В общем, изменения в выкройке не столь существенны, как и что менять, можно решить самостоятельно в каждом конкретном случае. Я хотела лишь показать, что есть возможность “легким движением руки” существенно сэкономить материальные ресурсы в виде ткани, практически не изменяя задуманной идеи. С другой стороны, и сам ексельно-вычислительный подход способен сократить время для расчета выкройки, максимально близкой к золотой середине между “тем, что хочется” и ”тем, что можется”. Вот такая вот интенсификация производства юбок получается.

    Экономия ткани – это тот “инструмент для творчества”, который лежит на поверхности. Можно придумать и более интересные “забавы на свою голову”.

    Пример 2. Одна моя приятельница в порыве “бессознательной тяги к прекрасному за разумные деньги”, то бишь в приступе шопоголизма, накупила американского хлопка на распродаже… квартами. Некоторые кварты, конечно, были парами, некоторые даже по три и по четыре кусочка. И вот эта горка “на платьишка внучке” тихо ждала своего часа в шкафу, пока приятельница не увидела воочию мою юбку из предыдущего мастер-класса. Как раскроить из кварт юбочку аналогичного фасона, да так, чтобы она не напоминала лоскутное одеяльце?

    Задачка оказалась не простой, но вполне решаемой, особенно, если предположить, что каждый ярус раскраивается из одного и  того же вида ткани.

    На примере “идеальной модели” решение вообще выглядит сущим пустяком.  Для визуального удобства подбора параметров выкройки средних и нижних сегментов я их сразу внесла попарно на прямоугольник равный кварте ткани. Таким образом, чтобы сшить юбочку по приведенной ниже выкройке понадобится по три кварты ткани на каждый ярус, а с учетом качества американского хлопка я пренебрегла направлением долевой.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Не то чтобы получилась самая красивая юбка, но это тот гарантированный максимум, который можно выкроить, раскладывая по 2 элемента выкройки на каждую кварту. Глядя на картинку сразу понятно, что верхний сегмент можно и по 3 элемента на кварту разложить, то есть обойтись парой кварт на юбку вместо трех. Зато  полное “солнце” по подолу!

    Если, не меняя параметров юбки, подставить размеры “настоящей женщины” (52 по Burda), то мы увидим следующую картину:

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Т.е. мы всего лишь чуть-чуть не “вписались” верхним и нижним сегментом. Если бы только верхний сегмент “вышел за пределы”, то можно было бы прикинуть: ”а нельзя ли раскроить туда-обратно”, глядя на размеры (темно-красные и зеленые цифири, которых я писала выше). В описываемом случае такая возможность есть, поэтому попытаемся сделать так, чтобы нижний сегмент вписался в пол кварты и подкорректируем, например, соотношение высот нижнего и среднего ярусов:

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Поскольку между “моделью” и “настоящей женщиной” разница в 9 единиц по размерной сетке, то можно смело заключить, что большей части прекрасной половины человечества достаточно найти в своих запасниках “три раза по три кварты” ткани, чтобы сшить себе  весьма интересную юбочку.  А тем, кто увлекается лоскутным шитьем, можно просто немножко расхомячить свои запасы, подобрав 8-9 кварт, комбинирующихся друг с другом и поэкспериментировать с раскладом.

    К тому же, из кварт можно раскроить не только такие “скромные” юбочки. Можно размахнуться и на “2  c лишним солнца”, но… для того чтобы наша “идеальная модель” смогла щеголять в такой широкой юбке, придется увеличить число клиньев… и количество кварт ткани.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

     

    Учитывая, что в лоскутных магазинчиках ткани продаются не только квартами и оседают в шкафчиках кусочками других размеров, вы можете модифицировать расчеты под лоскуты, например, 50х75см или 50х65см… Все в ваших руках.

    Пример 3:

    Этот пример получился вследствие работы над ошибками в процессе пошива юбки 

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Как вы видите по подолу пришито кружево. Когда я рассчитала выкройку юбки, то, глядя на цифирь синего цвета в строке с надписью “Радиус внешний” – на картинке выше ее значение равно 462см, а смысл я описала еще в предыдущем мастер-классе – пошла закупать кружево.

    Ну вот сколько кружева вы бы купили, если синим по белому написано, что обхват юбки по подолу 462см и рюш из кружева делать не собираетесь, а просто “добавить длины и красоты” ? Для более точного принятия решения предположим, что цена за метр не сильно копеечная… Я бы купила, конечно, не 462+3(шов)=465см, а с запасом – 480см, помня о том, что юбка клешеная, а не прямая.  А если у кружева ширина больше 0.5см? Вот поэтому, как уже поколотый ежик, рассказываю, как же не нарваться на тот же кактус.

    “Идеальная модель”, разумеется, не станет экономить на красоте… и захочет пришить по подолу кружевную ленту шириной минимум в 3см.  И вот куча магазинов обследована и закуплен кусочек кружева длиной 480см шириной 3см. Остался последний штрих и шикарная юбка готова… Ага, как бы не так! Чтобы кружево легло гладко и не стягивало подол, его надо пришивать припосаживая так, что бы контур кружева повторял контур подола. Опытные портнихи делаю это “на глаз” и хорошо, если этот “глаз” в ладах с математикой и интуитивно прикуплено нужное количество кружева. В нашем случае понадобится ровно 5м, без учета швов на стачивание кружевной ленты в кольцо.

    А теперь рассказываю и показываю, как не плакать из-за 20см кружева. Для того чтобы рассчитать длину кружевной ленты, которая потребуется для оторочки подола юбки, после всех вычислений выкройки юбки в файле excel надо сделать еще “2 нажатия кнопки”. Если конкретно, то:  к значению “ДлинаЮбки” и значению “ВысотаНижнегоСегмента” надо добавить ширину кружева (тесьмы) в сантиметрах (соответствующие значения на рисунке ниже выделены сиреневым цветом). И вот теперь в соответствующей ячейке действительно будет то количество кружева, которое надо прикупить. Кто понял, в чем “математика кактуса” – хорошо, а кто не понял – поверьте на слово.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    А еще лучше проделать такую операцию не один раз и составить себе “табличку для похода в магазин за кружевом”. В описываемом случае примерно такого вида:

    Ширина кружева (см)  |   1    |   2    |   3    |   4   |   5    |   6    |    7  |  8

    Требуемая длина (см) | 474 | 488 | 500 | 513 | 526 | 539 | 552 | 566

    С другой стороны, таким нехитрым способом можно рассчитать и минимальную длину оборки-рюша по подолу, чтобы сделать гибридный вариант ярусной юбки “сборчасто-воланистый”.

    Часть вторая: “Что нам стоит дом построить, нарисуем – будем жить”.

    Не успела я всесторонне “развить и углУбить” расчеты трех-ярусной юбки воланами, как наступил новый “случай”.  Другая моя приятельница, попросившая рассчитать для нее юбку воланами, захотела добавить кокетку. Она, конечно, вежливо предложила рассчитать ей по стандартной программке, а кокетку она сама “отрежет” от готовой выкройки. Но мы не ищем легких путей. В процессе “программного отрезания кокетки” открылись новые “чудесные” возможности у такой модели юбки. Но по порядку.

    Лично для меня наличие кокетки по линии бедра скорее минус, чем плюс, но приверженцев такого фасона достаточно много. Поэтому я сделала для начала просто расчет на 4 яруса вместо 3. Верхний ярус – кокетка высотой по умолчанию равной высоте бедер (ВБ), смоделированная все  также на основе прямого конуса. Пора уже опять вспомнить Чебышев с его нетленкой: “ Допустим, для простоты, что тело человека имеет сферическую форму”.

    Так что же полезного, кроме лишних швов, может дать нам отрезная кокетка?  Продолжаем мучить все ту же “идеальную модель”. Следующая картинка приведена не для демонстрации открывшихся возможностей, а для пояснения новых параметров, которые потребуются для расчета юбки на кокетке.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Что же появилось нового? Цвета для схематического изображения выкроек воланов и основной части клина остались прежними. Зеленым контуром показана схема выкройки для кокетки: на маленькой картинке – часть кокетки, соответствующая одному клину, а на большой – полностью спинке или переду. В приближении прямого конуса предполагается, что фигура имеет  симметричные пропорции, в общем, с учетом того, что центр переда и спинки кроится по долевой, а боковые швы – по косой, для беспроблемных фигур подойдет такой метод. Если же вы знаете свои “особенности”, то для выкройки кокетки можно использовать привычное лекало.

    Как я уже писала, по умолчанию предполагается, что высота кокетки равна высоте бедра – для простоты вычислений. Для остальных случаев придется вносить изменения в расчет. Как и в предыдущей версии, напротив названий ярусов в основном столбце черным шрифтом указана его высота. Цветными циферками в соответствующей строке  представлен прямоугольник ткани, из которого можно выкроить этот сегмент: темно-красным шрифтом указан размер по радиусу, а зеленым – по углу. Припуски по 1.5 см уже учтены, а для нижнего клина можно учесть и подгибку. Для кокетки указаны размеры, как для клина, так и для спинки-переда:

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Усложнить – усложнила, но когда же пойдет речь о плюсах отсечения кокетки? Честно говоря, я их все же увидела, но не сразу и не много. 

    Плюс 1.

    Теперь с помощью таких расчетов можно смоделировать не только расклешенную юбку. Ранее моделирование предполагало, что расширение верхнего клина однозначно определяется ОТ-ОБ-ВБ. Теперь же мы можем смоделировать юбку прямую или даже зауженную к линии годе.

    Задав параметр “Сужение-расширение основы” равным “0”, мы получим выкройку клина для прямой юбки,

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    При отрицательном значении параметра “Сужение-расширение основы” равным, например “ — 0.5”, мы получим выкройку клина для юбки, сужающейся к линии притачивания воланов,

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    И лишь задав этот параметр равным “1”, мы получим юбку, как в предыдущей версии – расклешенную строго по бедрам:

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Но можно на этом не останавливаться и сделать юбку с бОльшим клешением уже в основной части, задав параметр “Сужение-расширение основы” больше “1”. Почему в “подсказке написано, что этот параметр не должен превышать значение “5”? Это рекомендованное ограничение, решение для значений больше 5 существует, но, на мой взгляд, представляет сугубо теоретический интерес.

    И чтобы сделать этот плюс более существенным, хочу добавить еще одну рекомендацию. После построения выкроек основной части клина и кокетки клина, их можно объединить. Т.е., таким образом, внесение кокетки расширяет возможности для моделирования  базовой части юбки, потому что она состоит уже не из одного конуса, а из двух.

    Плюс 2. …

    А вот других плюсов в этой реализации я не увидела. Но она имеет право на жизнь, как один из вариантов. Возможно, у вас появятся идеи по расширению этого варианта. Как минимум, можно пойти  в сторону увеличения числа ярусов. Однако, лично мне не интересно кроить десятки тоненьких воланчиков-ленточек для получения юбки-годе в разноцветную горизонтальную полоску. Три яруса – самый универсальный вариант, кокетка не в счет – это технический элемент, имхо.

    И вот, когда я решила, что ничего нового из моделирования на основе прямых конусов уже не вынести и пора переходить к наклонным

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Наталия подала мне идею рассчитать аналогичным образом шляпку. И понеслось….

    Часть третья или исследование “сферического коня в вакууме”.

    Вот так, с легкой руки Наталии, мне представилось удовольствие провести изыскания в области моделирование шляпки на основе прямых конусов с помощью Еxcel. Конечно такое ограничение существенно сокращает возможные фасончики шляп, но переход к моделированию с использованием наклонных конусов уже делает слишком трудозатратными сами расчеты.

    Заранее извиняюсь за терминологию изложения. Пыталась найти любительский компромисс между математическими, портновскими и “общечеловеческими” понятиями – уж как смогла. Если читать, глядя на картинки, надеюсь, будет понятно.

    И так по порядку.  На основе прямых конусов можно смоделировать достаточно много фасонов шляпок. Конечно, ничего замысловатого, зато легко рассчитать. Главное включить воображение и вперед! Вместе с первым примером рассмотрим и правила задания начальных данных для расчета. Все расчеты будем проводить для “ОбхватаГоловы” равном 57см+4% на свободу облегания.

    Пример 1. Шляпа с облегающей тульей и широкими полями.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Конкретных параметров такой шляпы я не нашла, фото взяты из интернета, поэтому в задании начальных данных исхожу из анализа нескольких готовых выкроек. Все параметры подписаны так, как мне показалось наиболее понятным и связаны, в первую очередь, с выкройкой, а не с самой шляпой. Поэтому в качестве подсказки красным контуром на графике в верхнем левом углу приведен “осевой срез” шляпы. Оранжевым контуром показана схема выкройки донышка, голубым – полей, а разноцветным – тульи.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Теперь подробнее. Для того чтобы понять, что понимается под “Диаметром_дОнышка”, немного порассуждаем. Самое привычное – это плоское донышко в виде круга, но иногда Вы видите на выкройке донышка вытачку – она сделана для того, чтобы придать донышку объем. Мы будем рассматривать объемное донышко как прямой конус

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Так вот — диаметр основания этого конуса и есть “Диаметр_дОнышка”, если донышко шляпки плоское, это значит, что угол при вершине его равен 180градусам, если оно с вытачкой (объемное), то меньше 180 градусов. Теоретически может, конечно, быть и больше 180, именно для этого я заранее и обозначила разным цветом начало и окончание контура донышка (желтый ромбик и коричневый плюсик). Далее, для простоты будем называть  угол при вершине – углом раствора конуса. На картинке выше я задала “УголРаствораДонышка” равным 180 градусам, а “Диаметр_дОнышка” – 15см.

    “УголРаствораТульи” тульи вычисляется однозначно, исходя из параметров донышка и “ОбхватаГоловы”. Можно задать только высоту самой тульи. Контуры выкройки тульи окрашены в разные цвета затем, чтобы было понятно какой срез притачивать к полям, а какой к донышку. Срез, обозначенный на выкройке оранжевым цветом, притачивается к донышку, а обозначенный голубым цветом – к полям.

    Величина “УголРаствораПолей” отражает, насколько тесно эти поля будут облегать наше тело…точнее его часть, которую принято называть головой. Ну, в общем, опять представляем усеченный конус и его частный случай  — плоский круг. Если угол раствора полей равен 180 градусам, то выкройка полей будет представлять собой плоский круг (как на крайних фото), если меньше – то уже конус (как на фото в центре), а если больше… такие роскошные поля только у кинодив на шляпах. Т.е., чем больше угол раствора у широкополой шляпы, тем она шикарнее… шутка, но теперь Вам должно стать понятнее, какие значения вносить в ячейку “УголРаствораПолей”.

    Все схемы для построения выкроек присутствуют на отдельных листах. По умолчанию представлены половинки выкроек для тульи и полей, сделано это отсечением отрицательной части шкалы оси ординат, если ее восстановить, то схема выкройки будет представлена полностью.

    Внимание! Вносить изменения в ячейки закрашенные красным цветом можно только в том случае, если вы четко понимаете, что делаете, поэтому я специально сделала подписи этих ячеек бледнее, чтобы не отвлекать внимание тех, кому эти изменения непонятны или неинтересны.

    Ах, да, а что же это там такое нарисовано бирюзовым контуром в верхнем правом уголке? Этот так, на всякий случай, выкройка клинышка, для пошива шляпки “очень похожей” на ту, что смоделировали c помощью прямых конусов. Но выкройка уже не в виде разверток этих самых конусов, а в виде клина. Число клиньев можно задавать в ячейке “КоличествоКлиньев”. На отдельных листах представлены схемы выкроек клина для шляпы целиком и отдельно для тульи, без полей.

    Пример 2. Скромная шляпка

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    По такой выкройке можно сшить и панамку из бязи, и демисезонную шляпку из твида или кожи. Вот несколько примеров, фото взяты из интернета.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    При задании параметров исходим из того, что донышко у шляпки плоское (“УголРаствораДонышка” равен 180 градусам) и небольшое (“Диаметр_дОнышка” равен 16см). Поля достаточно узкие(“ШиринаПолей” равна 8см) и “УголРаствораПолей” равен 100 градусам.

    Пример 3. Берет с полями или шляпка, бывшая на пике моды в 90-е.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Именно в 90-х выкройки таких шляпок публиковались везде: от районной вечерней газеты до журнала Burda. Я сама износила 3 экземпляра (может и больше, но помню только три). А вот сейчас даже иллюстрацию к этой шляпке искала в интернете “долго и мучительно”. Забыли такой интересный фасон, совсем забыли… значит точно нужно шить. Исключительно практичная веСЧь. Шляпка из чистошерстяного драп-велюра мне успешно заменяла меховую шапку. Потом я сделала шляпку из полушерстяного драпа на стеганной подкладке, но она оказалась слишком теплой для меня. Пришлось повторить первый вариант, но в другом цвете. До сих пор считаю, что чистошерстяной драп-велюр, а еще лучше с добавлением альпаки или кашемира, это идеальный вариант для легкой и теплой шляпки по такой выкройке. Хотя более популярными в те времена были бархатные и твидовые, а чуть позже – флисовые.  Вот такое лирическое отступление на уроке математики. А теперь вернемся к предмету.

    Такая шляпка отличалась тем, что у нее угол раствора тульи и полей примерно равны, как на крайнем фото справа. Попробуем подобрать параметры.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    При задании параметров исходим из того, что донышко у шляпки почти плоское (“УголРаствораДонышка” равен 170 градусам) и достаточно большое, почти, как в берете (“Диаметр_дОнышка”равен 30см). Поля достаточно узкие (“ШиринаПолей” равна 9см) и “УголРаствораПолей”равен 120 градусам.

    Замечание из личного опыта. Донышко в данном случае задаем не плоским, но  ытачку не делаем, а просто выкраиваем круг, игнорируя вытачку, и припосаживаем его, притачивая к тулье. Так шляпка смотрится более “обтекаемой”.

    У этой модели можно выделить подвид, который чаще шили полностью или частично из меха.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Донышко поменьше, тулья повыше и угол раствора полей совсем скромный.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    При задании параметров исходим из того, что донышко у шляпки почти плоское (“УголРаствораДонышка” равен 170 градусам) и по диаметру чуть больше головы ( “Диаметр_дОнышка”равен 22см). Поля достаточно узкие (“ШиринаПолей” равна 9см), а тулья повыше (“ВысотаТульи” равна 10см), зато “УголРаствораПолей”равен всего… 90 градусам.

    Пример 4. Берет.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    На примере берета как раз проявляется один из недостатков этой реализации построения выкроек. “ВысотуТульи” придется подбирать, потому что “УголРаствораТульи” однозначно вычисляется из размеров донышка и обхвата головы, а классический берет предполагает, что “УголРаствораТульи” равен 180 градусам или “почти 180”, поэтому изменяя высоту тульи будем приближаться к требуемому значению ” УголаРаствораТульи”. При задании параметров исходим из того, что донышко у берета плоское (“УголРаствораДонышка” равен 180 градусам) и достаточно большое ( “Диаметр_дОнышка” равен 35см). Поля – это кант шириной 2см (“УголРаствораПолей” равен 1 градусу).

    А теперь зададим “ВысотуТульи” равной 7см, например. И что получилось

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Такой результат меня не устраивает. Берет получился  “с вывертом”, кроить тулью надо не меньше, чем из двух частей, потому что “УголРаствораТульи” заметно больше 180градусов, судя по картинке. Такие береты тоже встречаются, но сейчас идет речь о построении идеально-плоского берета.

    Таким образом, подставив последовательно бОльшие значения “ВысотыТульи”, получилось, что в данном случае “УголРаствораТульи” равен 180 градусам тогда, когда “ВысотаТульи” — 8.05см

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Если же задать “ВысотуТульи”равной 9см, например, то беретка будет уже не плоской. 

    Т.е. даже в построении берета есть, где поупражняться и, что приятно, только циферки подставляй и не надо проводить громоздкие вычисления карандашиком на бумажке, пусть даже и с калькулятором.

    Пример 5. Цилиндр или канотье

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Если Вам вдруг захочется рассчитать выкройку для цилиндра или шляпки-канотье, то опять придется столкнуться с трудностями в рамках данной реализации. Теперь подбираем “Диаметр_дОнышка” так, чтобы “УголРаствораТульи” стал близок нулю (точно ноль  нельзя из-за особенностей вычисления) или визуально, чтобы  выкройка тульи приблизилась к прямоугольнику. Алгоритм подбора такой же, как и в Примере 4.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    Ну вот собственно и все основные варианты. Конечно, можно много насочинять шляпок, но опять захочется переходить к наклонным конусам, а это уже совсем другой уровень сложности вычислений и визуализации.

    Какие еще есть хитрости? Поскольку интерес к таким расчетам пока чисто теоретический, то их не много.

    Например, вариант с собранным донышком, как “поварской колпак”. Для этого нужно просто рассчитать выкройку шляпки, задав угол раствора донышка заметно меньше 180градусов, а потом игнорировать вытачку и раскраивать донышко, как круг.

    Или наоборот, если вы хотите сделать берет, собранный к ободку, то задайте Обхват Головы в 1.5-2 раза больше, а ободок выкраивайте по размеру головы.

    Главным недостатком по моим представлениям является то, что приступая к расчетам, надо уже представлять, как должна выглядеть выкройка…. Хотя бы в общих чертах. А программка лишь позволяет сделать такой расчет точным.

    К сожалению, данный метод не предусматривает вариант, когда тулья имеет разную высоту спереди и сзади.

    Однако, для того, что бы сделать поля разной ширины спереди и сзади,  я реализовала упрощенный вариант такого расчета и записала его в отдельный файл, чтобы не запутать лишними параметрами тех, кому это неинтересно. По-хорошему, такой вариант расчета уже надо проводить на основе наклонных конусов, но я просто изменила формулу вычислений внешнего контура полей. Именно поэтому с результатами такого расчета надо быть настороже и понимать, что поля будут обрамлять Ваше личико не совсем предсказуемо. Да… выкройку клиньев в таком варианте я привожу только для тульи, а в “осевом срезе” величина полей – среднее арифметическое между передом и спинкой. Вот как будет выглядеть расчет для шляпки, у которой поля сзади шириной 6см, а впереди – 16см.

    Юбка, шляпка & Excel, или Математическое моделирование на основе прямых круговых конусов

    А уж как будет выглядеть сама шляпка…

    Заключение.

    Вот такая краткая инструкция получилась. Наверное, можно было бы сделать её и подробнее, но лучше я постараюсь ответить на ваши вопросы. 

    К тому же я не теряю надежды,  что вышеописанные экзерсисы с Excel натолкнут кого-нибудь на свои идеи применения этого доступного приложения, или вы увидите те подводные камни, которых я не заметила, и будет повод для дискуссии. А также надеюсь,  что кто-нибудь  расширит уже предложенный мною вариант расчета и поделится со всеми результатами усовершенствования или своей версией.

    Я отдаю себе отчет в том, что просьбы о получении в пользование “чудесной программки” могли бы существенно повысить рейтинг этого мастер-класса, однако, мне кажется более удобным разместить эту программку на доступном для скачивания ресурсе, чтобы все желающие могли ее заполучить самостоятельно. Подробности о том “что, где и как” у меня в блоге.

    Здесь же мне хотелось бы увидеть в комментариях вопросы, критику и предложения. Комплименты также приветствуются.

    Спасибо за внимание.

    Источник: livemaster.ru

    Поделиться с друзьями

    Шитьё | Выкройки